10 Spatial mode transmission using low differential mode delay 6LP-fiber and all-fiber photonic lanterns

نویسندگان

  • John van Weerdenburg
  • Amado Velàzquez-Benitez
  • Roy van Uden
  • Pierre Sillard
  • Denis Molin
  • Adrian Amezcua-Correa
  • Enrique Antonio-Lopez
  • Maxim Kuschnerov
  • Frans Huijskens
  • Hugo de Waardt
  • Ton Koonen
  • Rodrigo Amezcua-Correa
  • Chigo Okonkwo
چکیده

To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such in this work, we combine wavelength and mode-division multiplexed transmission over a 4.45 km low-DMGD 6-LP-mode fiber by employing low-loss all-fiber 10-port photonic lanterns to couple light in and out of the fiber. Hence, a minimum DMGD of 0.2 ns (maximum 0.357 ns) is measured after 4.45 km. Instrumental to the multi-mode transmission system is the employed timedomain-SDM receiver, allowing 10 spatial mode channels (over both polarizations) to be captured using only 3 coherent receivers and real-time oscilloscopes in comparison with 10 for conventional methods. The spatial channels were unraveled using 20 × 20 multiple-input multiple-output digital signal processing. By employing a novel round-robin encoding technique, stable performance over a long measurement period demonstrates the feasibility of 10x increase in single-core multi-mode transmission. ©2015 Optical Society of America OCIS codes: (030.4070) Modes; (060.4080) Modulation; (060.4510) Optical communications; (060.1660) Coherent communications. References and links 1. Sandvine, “Global Internet Phenomena Report 2H 2013,” 2013. 2. A. M. J. Koonen, H. S. Chen, R. G. H. van Uden, and C. M. Okonkwo, “Compact integrated solutions for mode (de-)multiplexing,” in Proceedings of the 2014 OptoElectronics and Communication Conference (OECC) and Australian Conference on Optical Fibre Technology (IEEE, 2014), pp. 164–166. 3. M. Kushnerov and V. Sleiffer, “Multi-mode SDM systems: upgrade scenario for legacy systems and achievable system cost,” in Proceedings of the European Conference on Optical Communications (ECOC, 2013), pp. 1-22. 4. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber,” J. Lightwave Technol. 31(4), 554–562 (2013). 5. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. G. Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012). #240465 Received 11 May 2015; revised 31 Jul 2015; accepted 3 Aug 2015; published 11 Sep 2015 © 2015 OSA 21 Sep 2015 | Vol. 23, No. 19 | DOI:10.1364/OE.23.024759 | OPTICS EXPRESS 24759 6. R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014). 7. R. Ryf, N. K. Fontaine, M. A. Mestre, S. Randel, X. Palou, C. Bolle, A. H. Gnauck, S. Chandrasekhar, X. Liu, B. Guan, R. Essiambre, P. J. Winzer, S. Leon-Saval, J. Bland-Hawthorn, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, “12 x 12 MIMO Transmission over 130-km Few-Mode Fiber,” in Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.4. 8. N. K. Fontaine, R. Ryf, H. Chen, A. V. Benitez, B. Guan, R. Scott, B. Ercan, S. J. B. Yoo, L. E. Grüner-Nielsen, Y. Sun, R. Lingle, E. Antonio-Lopez, and R. Amezcua-Correa, “30×30 MIMO Transmission over 15 Spatial Modes,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.1. 9. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011). 10. K.-P. Ho and J. M. Kahn, “Mode-dependent loss and gain: statistics and effect on mode-division multiplexing,” Opt. Express 19(17), 16612–16635 (2011). 11. P. Sillard, D. Molin, M. Bigot-Astruc, H. Maerten, D. van Ras, and F. Achten, “Low-DMGD 6-LP-Mode Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M3F.2. 12. P. Sillard, D. Molin, M. Bigot-Astruc, K. de Jongh, and F. Achten, “Low-Differential-Mode-Group-Delay 9-LPMode Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2C.2. 13. H. Chen, R. van Uden, C. Okonkwo, and T. Koonen, “Compact spatial multiplexers for mode division multiplexing,” Opt. Express 22(26), 31582–31594 (2014). 14. H. Chen, V. A. J. M. Sleiffer, R. G. H. Van Uden, C. M. Okonkwo, M. Kuschnerov, F. M. Huijskens, L. GrünerNielsen, Y. Sun, H. De Waardt, and A. M. J. Koonen, “3 MDMx8 WDMx320 Gb/s DP 32QAM transmission over a 120km few-mode fiber span employing 3-spot mode couplers,” Proc. 18th OptoeElectronics and Communications Conference (OECC), paper PD3–6-1 (2013). 15. T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015). 16. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005). 17. N. K. Fontaine, R. Ryf, S. G. Leon-Saval, and J. Bland-Hawthorn, “Evaluation of Photonic Lanterns for Lossless Mode-Multiplexing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.2.D.6. 18. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012). 19. A. M. Velazquez-Benitez, J. C. Alvarado, G. Lopez-Galmiche, J. E. Antonio-Lopez, J. Hernández-Cordero, J. Sanchez-Mondragon, P. Sillard, C. M. Okonkwo, and R. Amezcua-Correa, “Six mode selective fiber optic spatial multiplexer,” Opt. Lett. 40(8), 1663–1666 (2015). 20. B. Huang, N. K. Fontaine, R. Ryf, B. Guan, S. G. Leon-Saval, R. Shubochkin, Y. Sun, R. Lingle, Jr., and G. Li, “All-fiber mode-group-selective photonic lantern using graded-index multimode fibers,” Opt. Express 23(1), 224–234 (2015). 21. C. Okonkwo, R. van Uden, H. Chen, H. de Waardt, and T. Koonen, “Advanced coding techniques for few mode transmission systems,” Opt. Express 23(2), 1411–1420 (2015). 22. R. G. H. van Uden, C. M. Okonkwo, H. Chen, H. de Waardt, and A. M. J. Koonen, “Time domain multiplexed spatial division multiplexing receiver,” Opt. Express 22(10), 12668–12677 (2014). 23. N. Benvenuto and G. Cherubini, Algorithms for Communications Systems and their Applications (Wiley, 2002). 24. R. G. H. van Uden, C. M. Okonkwo, V. A. J. M. Sleiffer, H. de Waardt, and A. M. J. Koonen, “MIMO equalization with adaptive step size for few-mode fiber transmission systems,” Opt. Express 22(1), 119–126 (2014). 25. R. G. H. van Uden, C. M. Okonkwo, H. Chen, H. de Waardt, and A. M. J. Koonen, “28-GBd 32QAM FM transmission with low complexity phase estimators and single DPLL,” IEEE Photonics Technol. Lett. 26(8), 765–768 (2014). 26. R. G. H. van Uden, C. M. Okonkwo, V. A. J. M. Sleiffer, H. de Waardt, and A. M. J. Koonen, “Performance comparison of CSI estimation techniques for FMF transmission systems,” in Photonics Society Summer Topical Meeting Series, Waikoloa, 2013. 27. B. Widrow and E. Walach, Adaptive Inverse Control (Wiley, 2008).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

10 Spatial mode transmission using low differential mode delay 6-LP fiber using all-fiber photonic lanterns.

To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such ...

متن کامل

Mode-multiplexed transmission over conventional graded-index multimode fibers.

We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to compensate for the differential group delay between the excited modes. Spatial mode filters are added to...

متن کامل

Fiber Space (De)Multiplexer based on Photonic Lantern

Mode multiplexer/demultiplexer for Space Division Multiplexing (SDM). .................... 2 Photonic Lantern ............................................................................................................... 2 Fiber Photonic Lantern ..................................................................................................... 3 Phoenix Fiber Lanterns ..........................

متن کامل

Design of Single Mode Photonic Crystal Fiber with Outstanding Characteristics of Confinement Loss and Chromatic Dispersion over S to L Communication Band

In this article, a novel structure of photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and ultra-low confinement loss is presented. By replacing the circular air-holes of two first rings with the elliptical air-holes, a fiber with outstanding features of chromatic dispersion and confinement loss is designed. The proposed structure is optimized for operating in a wide...

متن کامل

Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber

One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017